Project consortium				
1	Technical University of Denmark	DK		
2	Commissariat à l'énergie atomique et aux	FR		
	énergies alternatives			
3	University of Salerno	IT		
4	Institut de Recerca en Energia de	ES		
	Catalunya			
5	Institute of Power Engineering	PL		
6	ECN part of TNO	NL		
7	Foundation for Research and Technology	GR		
8	Centre for Research & Technology Hellas	GR		
9	Technical Research Centre of Finland	FI		
10	École polytechnique fédérale de	CH		
	Lausanne			
11	Politecnico di Torino	IT		
12	SolydEra	IT		
13	Elcogen	EE		
14	Sunfire	GE		
15	Ceres Power	GB		
16	Hexis	СН		

European Project: Next Generation Solid Oxide Fuel Cell and Electrolysis Technology

NewSOC Beyond the Project

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 874577. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Contact:

Project Coordinator Prof. Dr. Dr. Anke Hagen

Technical University of Denmark

Department of Energy Conversion and Storage Fysikvej B. 310, DK-2800 Kongens Lyngby, Denmark

Phone: +45 46775884

Email: anke@dtu.dk

Meet us here:

Internet: https://www.newsoc.eu/

Solid oxide technologies (SOC: Solid oxide fuel cells SOFC & Solid oxide electrolysis SOE, reversible fuel cell- electrolysis revSOC) are flexible, sustainable solutions for many sectors, such as stationary, transport, power-to-X, etc. Commercial cells & stacks exist.

The NewSOC project developed the next generations.

- ✓ Improved cells/stacks
- ✓ Cells with higher tolerance towards carbon & sulfur and stability towards redox conditions and cycling operation
- ✓ Cheaper cells/stacks with less toxic organics or materials during manufacture.
- **NewSOC**
- □ Addressed 12 concepts for cells & stacks

- The improved components were integrated into industrial cell and stack platforms, comprising electrolyte, fuel electrode, and metal supported cell configurations.
- * This successful integration paves the way for higher TRLs beyond the NewSOC project, not restricted to the participating SOC partners
- * The concepts can be exploited individually or in combinations

Succeeded to demonstrate: for the SOC configuration	ES	FES	MS
Improved performance & durability			
Improved Ni/YSZ fuel electrode			
Improved LSCF/CGO air electrode	С		С
Thin film barrier layer			
Improved tolerance			
Sulfur: Ni/CGO infiltrated LSFNT based fuel electrode			С
Carbon: Bi-metallic or tri-metallic modified Ni/GDC fuel electrode			Ŭ
Redox: Doped lanthanum chromite based fuel electrode			
Reversible operation: Ni/CGO infiltrated LSFNT based and bi/tri-metallic modified Ni/GDC fuel electrode			\checkmark
Reduced cost and toxicity during manufacture			
Co-free LSF based air electrode	С		C
Partial Co substitution in Mn-Co-Cu-O spinel interconnect coatings	C	\checkmark	C
Sealant deposition without toxic solvents		C	С
			С

ES: Electrolyte supported, FES: Fuel electrode supported, MS: Metal supported

Demonstrated in NewSOC

Expected to be suitable